In a dynamic manufacturing environment, it may not be adequate to only look for known process problems, but also important to uncover and react to new, previously unseen patterns as they emerge. Univariate and linear multivariate Statistical Process Control methods have traditionally been used in the semiconductor industry to detect anomalies. With increasing equipment, process and product complexity, multivariate anomalies that also involve significant interactions and nonlinearities may be missed by these more traditional methods. We will demonstrate a method for identifying complex anomalies using a deep learning autoencoder. Once the anomalies are detected, their fingerprints are generated so they can be classified and clustered, enabling investigation of the causes of the clusters. As new data streams in, it can be scored in real-time to identify new anomalies, assign them to clusters and respond to mitigate potential problems. These tools are no longer the exclusive province of data scientists. With today’s Analytics platforms, they can be utilized by virtually all engineers.

Hora

19:00 - 20:00 hs GMT+1

Organizador

TIBCO
Compartir
Enviar a un amigo
Mi email *
Email destinatario *
Comentario *
Repite estos números *
Control de seguridad
Mayo / 2020 1119 webinars
Lunes
Martes
Miércoles
Jueves
Viernes
Sábado
Domingo
Lun 27 de Mayo de 2020
Mar 28 de Mayo de 2020
Mié 29 de Mayo de 2020
Jue 30 de Mayo de 2020
Vie 01 de Mayo de 2020
Sáb 02 de Mayo de 2020
Dom 03 de Mayo de 2020
Lun 04 de Mayo de 2020
Mar 05 de Mayo de 2020
Mié 06 de Mayo de 2020
Jue 07 de Mayo de 2020
Vie 08 de Mayo de 2020
Sáb 09 de Mayo de 2020
Dom 10 de Mayo de 2020
Lun 11 de Mayo de 2020
Mar 12 de Mayo de 2020
Mié 13 de Mayo de 2020
Jue 14 de Mayo de 2020