Data engineers today serve a wider audience than just a few years ago. Companies now need to apply machine learning (ML) techniques on their data in order to remain relevant. Among the new challenges faced by data engineers is the need to build and fill Data Lakes as well as reliably delivering complete large-volume data sets so that data scientists can train more accurate models. Aside from dealing with larger data volumes, these pipelines need to be flexible in order to accommodate the variety of data and the high processing velocity required by the new ML applications. Qubole addresses these challenges by providing an auto-scaling cloud-native platform to build and run these data pipelines. In this webinar we will cover: - Some of the typical challenges faced by data engineers when building pipelines for machine learning. - Typical uses of the various Qubole engines to address these challenges. - Real-world customer examples

Hora

11:00 - 12:00 hs GMT+1

Organizador

Qubole
Compartir
Enviar a un amigo
Mi email *
Email destinatario *
Comentario *
Repite estos números *
Control de seguridad
Mayo / 2020 1144 webinars
Lunes
Martes
Miércoles
Jueves
Viernes
Sábado
Domingo
Lun 27 de Mayo de 2020
Mar 28 de Mayo de 2020
Mié 29 de Mayo de 2020
Jue 30 de Mayo de 2020
Vie 01 de Mayo de 2020
Sáb 02 de Mayo de 2020
Dom 03 de Mayo de 2020
Lun 04 de Mayo de 2020
Mar 05 de Mayo de 2020
Mié 06 de Mayo de 2020
Jue 07 de Mayo de 2020
Vie 08 de Mayo de 2020
Sáb 09 de Mayo de 2020
Dom 10 de Mayo de 2020
Lun 11 de Mayo de 2020
Mar 12 de Mayo de 2020
Mié 13 de Mayo de 2020